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Abstract We report an implementation of an atomic multi-
pole model (up to quadrupole) for calculating the electro-
static properties of molecules based on electron densities
derived from MNDO-like NDDO-based semiempirical MO
calculations with minimal s,p,d valence basis sets. The re-
sults were validated by a comparison of the calculated values
of the molecular electrostatic potential with those obtained
from fine grain numerical integrations (both with AM1*),
B3LYP/6–31G(d) and MP2/6–31G(d). The DFT and ab initio
potentials can be reproduced remarkably well (mean un-
signed error <2 kcal mol−1 e−1) using simple linear regres-
sion equations to correct the AM1* (multipole) results.

1 Introduction

Coulomb interactions are usually the major contribution to
intermolecular interaction energies [1]. The molecular elec-
trostatic potential (MEP) [2] has thus played an important
role in applications that depend on intermolecular interaction
energies, such as quantitative structure-activity (QSAR), [3]
and -property (QSPR) [4] relationships, prediction of tox-
icity [5], docking [6], (continuum) solvation models [7–10]
and many others. The MEP can be derived from the results
of quantum mechanical calculations using

MEP(r) =
n∑

i=1

Zi

|Ri − r| −
∞∫

−∞

ρ(r′)
|r′ − r| d r′ , (1)
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where n is the number of atoms in the molecule, Zi is the
nuclear charge of atom i located at Ri and ρ(r) is the elec-
tron density of the molecule.

Equation 1, however, involves integration of the elec-
tron density, which is computationally acceptable within the
framework of ab initio or density-functional theory (DFT)
calculations, but becomes prohibitively expensive in com-
parison with the calculation of the wavefunction for semi-
empirical molecular orbital (MO) calculations such as those
using the MNDO, [11] AM1 [12] or PM3 [13] Hamiltonians.
The increasing use of such techniques for large numbers of
molecules in cheminformatics applications [14] requires not
only fast accurate calculations of the MEP, but also a com-
pact representation of the electrostatics of the molecule that
can be stored efficiently for reuse.

Several groups have therefore proposed techniques for
calculating the MEP from semiempirical wavefunctions. Rein
[15] investigated the use of multipoles up to quadrupoles with
semiempirical techniques as early as 1973. Merz and Besler
[16] used a transformation to contracted Gaussian functions
in MOPAC-ESP to circumvent the computationally difficult
problem of calculating integrals over Slater atomic orbitals
(AO), which are used as the basis set in most MNDO-like
techniques. However, the calculational task remains very sig-
nificant in comparison with the energy calculation so that this
technique is no longer popular. Reynolds et al.[17] pointed
out that the MEP can be calculated with little loss in accuracy
by applying the zero-differential overlap (ZDO) [18] approx-
imation strictly (i.e.by ignoring the two-atom blocks of the
density matrix). They explicitely calculated the one-electron
integrals using s- andp-Slater basis functions.A similar ZDO
approach was taken by Ford and Wang [19] and later by Ba-
kowies and Thiel [20]. Their technique used the multipole
approximation for two-electron integrals introduced by De-
war and Thiel [21] for MNDO to compute (and scale) the
one-electron integrals.

We used the fact that hybrid atomic orbitals (HAOs) can
be described by one variable, the s-coefficient, within a min-
imal valence sp-basis set to define the computationally effi-
cient natural atomic orbital/point charge (NAO-PC) model
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[22–25]. In this technique, the natural atomic orbitals (NAOs)
[26] are represented by two negative point charges, one lo-
cated at the charge center of each orbital lobe. This model
circumvents the integration step by precomputing the depen-
dence of the position and magnitude of the charges on the
s-coefficient of the NAO from high-resolution numerical inte-
grations of the Slater AO. The NAO-PC model, however, has
two drawbacks. Because the NAOs are derived by diagonal-
ization of the one-atom blocks of the density matrix, ones
with degenerate occupancies are not given uniquely, leading
to erroneous results as found, for instance, for fullerenes [27].
This problem can be avoided using alternative models based
on HAOs or localized MOs [27]. The second problem, how-
ever, means that the NAO-PC technique cannot be extended
easily to methods that use d-orbitals in the basis set. This
difficulty arises because the HAOs are no longer defined by
the s-coefficient, so that multidimensional lookup functions
would be necessary for spd-basis sets.

In order to resolve the above difficulties, we have returned
to the ZDO-approach of Reynolds et al. (NAO-PC is also a
ZDO-technique) and have formulated it in terms of an atom-
multipole model similar to that also derived from the NAO-
PC charges [23]. Because the two-center integrals in MNDO
[11] and MNDO/d [28,29] are calculated within a multi-
pole approximation limited to monopoles, dipoles and quad-
rupoles, the one-atom blocks of the density matrix can be
represented directly as linear combinations of the multipoles
corresponding to the individual charge distributions. The sum
of these multipoles then gives the atomic monopole (equiv-
alent to the Coulson charge), dipole and quadrupole. This
allows us to store a representation of the anisotropic atomic
electron density as ten floating-point numbers (the monopole,
three components of the dipole vector and six components of
the symmetrical quadrupole tensor).

We now describe an implementation of this technique. In
the appendices, we list the charge arrays representing each
charge distribution for a minimal valence spd-basis set and
give the formulae used to calculate the MEP and the electro-
static field from the atomic multipoles. These formulae have
been given before [11,28,29] but we collect them all together
here for convenience in future applications.

2 Theory

2.1 Treatment of two-electron integrals in MNDO-like
semiempirical methods

MNDO-type semiempirical methods use Slater–Zener orbi-
tals as their basis set. These AO φ with quantum numbers n,
l, m are defined in the usual manner [30]. They can be sepa-
rated into a radial functionRnl(r) and a normalized spherical
harmonic part Slm(�,�) [31] according to

φnlm = Rnl(r) Slm(�,�) . (2)

However, the Slater–Zener basis functions are not used
directly for integral evaluation in semiempirical programs
because of the complexity of the mathematical expressions.

Instead, an elegant simplification[11] is used, in partic-
ular, for the two-electron integrals (µν|λσ) (Eq. 3; e is the
electronic charge, r12 is the interelectronic distance and dτ1
anddτ2 denote the integration volume elements over the coor-
dinates of electron 1 and 2):

(µν|λσ) =
∫ ∫

φµ(1)φν(1)
e2

r12
φλ(2)φσ (2) dτ1 dτ2 . (3)

In the NDDO-approximation[32] the three- and four-
center two-electron integrals are neglected; the remaining
two-center two-electron integrals (µAνA|λBσB) describe the
electrostatic interaction between the two-charge distributions
ρµν (1) = µν and ρλσ (1) = λσ on the atomic centersA and
B. Because such a charge distribution ρ can be expressed in
terms of a finite linear combination of normalized real spher-
ical harmonics, the real spherical multipole moment compo-
nents of ρ may be written as [28,31]

M
µν

lm =
∫

dlm r
′ Slm(�,�) ρµν(r,�,�) dτ

= e a
µν

lm dlm

∫
Rnµlµ(r) Rnνlν (r) r

l+2 dr

= e a
µν

lm dlm A
µν

l , (4)

with

dlm =
√

4π

2l + 1
, (5)

A
µν

l = (2ζµ)
nµ+1/2 (2ζν)

nν+1/2(ζµ + ζν)
−nµ−nν−l−1

× (nµ + nν + l)!√
(2nµ)!(2nν)!

. (6)

where we use the orthogonality of the spherical harmonics
to simplify the expressions.The coefficients aµνlm in Eq. (4)
are related to the Clebsch–Gordan coefficients (see reference
[28] for details); ζµ and ζν (Eq. 5) are the orbital exponents
from the radial part of the Slater–Zener orbitals:

Rnl(r) = (2ζ )n+1/2

(2n)! 1/2
rn−1 e−ζ r (7)

With the expressions in Eq. 4 the two-center two-elec-
tron integral (µν|λσ) can be calculated as a sum over classi-
cal multipole interactions. However, this classical description
breaks down for small interatomic distances, where the two
interacting charge distributions ρµν and ρλσ overlap. Thus,
the multipole interaction [Mµν

l1m
,Mλσ

l2m
] is modified by apply-

ing the Klopman formula [33] to each interaction between
the point charges describing the two interacting multipoles,
so that the final formula for computing the two-center two-
electron integrals reads[28]

(µν|λσ) =
∑

l1,l2

lmin∑

m=−lmin

[Mµν

l1m
,Mλσ

l2m
] , (8)

where lmin is the smaller of l1 and l2. In MNDO-like meth-
ods the one-electron integrals are also calculated using this
approach (i.e. as if they were two-electron integrals in which
one charge distribution is a point charge).
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Fig. 1 Point-charge configurations (α, β = x, y, z). The separation between two neighboring point charges of opposite sign is 2D (cf Table 2)

A minimal spd basis yields 45 unique charge distribu-
tions µν (1 ss, 3 sp, 5 sd, 6 pp, 15 pd and 15 dd) with 96
nonvanishing multipole moments Mµν

lm . However, for prac-
tical reasons, the 44 octopole and hexadecapole moments
are neglected, only monopoles, dipoles and quadrupoles are
kept. These have been shown in numerical test calculations
to reproduce the major contributions to the interaction [28].

The point-charge configurations arising from the multi-
poles up to l = 2 are shown schematically in Fig. 1, where
the separation between two adjacent point charges of oppo-
site sign is 2D (see ref [28,29] for details). Table 2 in the
Appendix provides coordinates and charge values for the
point charges of all possible charge configurations µν. Note
that the magnitudes of charges for each charge configuration
are given by the corresponding density matrix element Pµν .

The atomic charge, dipole and quadrupole moment can be
calculated easily from this array of multipole point charges
according to standard formulae [34].

2.2 Electrostatic potential caused by multipole charge
distributions

Having defined the atom-based multipoles in the framework
of semiempirical MO theory, we can now use them to cal-
culate molecular properties. The MEP at a point r caused by
multipoles is defined in general according to Eq.(9),

MEP(r) = q

(
1

R

)
− µ̂α∇α

(
1

R

)

+1

3
�̂αβ∇α∇β

(
1

R

)
− · · · , (9)

where q, µ̂α and �̂αβ are the operators for monopole, dipole
and quadrupole, respectively, R is the distance between the

multipole center and the MEP point, and ∇ is the Nabla oper-
ator. Explicit formulae,[35] also for the electric field and the
field gradient, are given in Appendix A.

Using the atom-based multipoles, the MEP at a certain
point in space can now be calculated easily by summing up
the charge, dipole and quadrupole contributions of all atoms.

3 Performance

In order to perform some preliminary tests, we have com-
pared the multipole electrostatics to numerically computed
semiempirical MEP values and to ab initio results. We chose
a small test set of molecules (cf Fig. 2) that was geometry
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Fig. 2 The test set molecules



162 A.H.C. Horn et al.

Table 1 Overview of test set computed with AM1*

Number Sum formula Symmetry Hamiltonian Basis ESP
functions points

1 H2O C2v AM1 6 48
2 SPCl3 C3v AM1* 45 79
3 C3O2NH7S C1 AM1* 40 68
4 C4ON3H5 Cs AM1 41 82
5 C4O2PFH10 C1 AM1* 47 85
6 C10H10Cl2Mo C2v AM1* 77 72

optimized with Vamp[36] using the AM1* Hamiltonian[37]
for molecules containing d elements. The structure obtained
was then subjected to the different MEP computation meth-
ods.

For the numerical calculation of the electron density need-
ed for the numerically computed MEP the molecule’s solvent
accessible surface was determined. To save computation time
the symmetry of the molecule was taken into account so that,
for example, for water just one-quarter of the surface points
was used for the MEP calculation. For the numerical inte-
gration the molecule was surrounded by a point grid with a
minimal distance of 30Å from an atom to the grid border;
the grid density was set to 15Å−1. Table 1 summarizes the
number of surface points for each molecule of the test set
finally used for the MEP computation.

We also compared the semiempirical MEPs with B3LYP
[38,39] and Moller-Plesset second-order (MP2)[40–43]
results, in order to judge their accuracy.We used the 6-31G(d)
basis set [44–46] throughout. For Molybdenum (molecule
6), the LANL2DZ basis set with Los Alamos pseudopoten-
tials [47–49] and with additional polarization functions [50]
was used. All ab initio calculations were performed using the
Gaussian03 program package[51].

Figures 3–7 show the ESP results of the two semiempirical
and the two ab initio methods (all values are in kcal mol−1 e−1).
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3.1 Comparison to numerical ESP calculation

With one exception, the multipole ESP reproduces the shape
of the numerical ESP curve well. However, the agreement is
less good for compound 2 (SPCl3).Generally, however, the
multipole method gives ESP values whose absolute magni-
tude is symmetrically too high. Again, compound 2 can be
considered an exception, in which the numerical ESP curve
shows three local maxima with higher values than the three
other curves.

3.2 Comparison to ab initio ESP Calculation

Figures 3–7 show that the difference between the two ab ini-
tio ESP values and the semiempirical ones is small, although
MP2 yields slightly larger absolute values than DFT, as ex-
pected.

Again, apart from compound 2, the semiempirical ESP
curves reflect their ab initio counterparts in shape (Fig. 8). The
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Fig. 6 Cytosine: ESP on the symmetrized solvent-accessible surface

values differ systematically, that is, the absolute numerical
ESP values are larger than the ab initio ones, but smaller than
those calculated by the multipole method.

3.3 General correlation

Although we did not expect a perfect correlation between the
multipole ESP method and other techniques, especially not
with the ab initio results, we have investigated the relationships
between the values obtained with the different methods.Thus,
we plotted the multipole ESP values of all molecules against
those of the other methods. To quantify the relationship be-
tween the ESP values we computed the Carbo[52], SCarbo

XY ,
and Hodgkin[53], SHodgkin

XY , indices as well as the Pearson
correlation coefficient, rXY , according to Eqs (10), (11) and
(12).

SCarbo
XY =

∑n
i=1 xiyi√∑n

i=1 x
2
i +

√∑n
i=1 y

2
i

(10)
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S
Hodgkin
XY = 2

∑n
i=1 xiyi∑n

i=1 x
2
i + ∑n

i=1 y
2
i

(11)

rXY =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

∑n
i=1(yi − ȳ)2

(12)

Figure 9 shows the correlation between the multipole and
the numerical ESP values for all 434 ESP surface points. The
Carbo index is 0.965, the Hodgkin index to 0.963, and the
correlation coefficient to 0.965.

The correlation between the multipole and DFT ESP cal-
culations (Fig. 10) shows a systematic deviation, as also
seen in Figs. 3–7. Thus, the similarity indices are still quite
satisfactory: Carbo index 0.952, Hodgkin index 0.859, cor-
relation coefficient 0.952, but the absolute values deviate
significantly. Nevertheless, the DFT results are reproduced
well by the regression equation Eq (13) (in kcal mol−1 e−1)

ESPDFT = 0.463 · ESPAM1∗ − 0.028 (13)

with N = 434, r2 = 0.907, σ = 1.9 and MUE= 1.3.
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Fig. 9 Multipole versus Numerical ESP (ESP points of all test mole-
cules included)
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Fig. 10 Multipole versus DFT ESP (ESP points of all test molecules
included)

The MP2 calculations (Fig. 11) give a similar picture to
the DFT case. We clearly see a correlation that has also man-
ifested itself in the different similarity indices. The Carbo
index is now 0.952, the Hodgkin index 0.901 and the corre-
lation coefficient 0.952. The regression equation for the MP2
results is given by Eq (14) (again, in kcal mol−1 e−1)

ESPMP2 = 0.525 · ESPAM1∗ − 0.009 (14)

with N = 434, r2 = 0.907, σ = 2.1 and MUE= 1.5.

4 Summary and outlook

We have presented a new method for the calculation of molec-
ular electrostatic properties in the spirit of NDDO semiempir-
ical methods based on a multipole-interaction scheme. The
atom-based monopole, dipole and quadrupole moments are
computed from the point-charge sets used to calculate the
two-electron integrals in MNDO-type methods[21].
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Fig. 11 Multipole versus MP2 ESP (ESP points of all test molecules
included)

Although the new method gives systematic deviations
from the numerical AM1*-ESP, and especially B3LYP/6-
31G(d) and MP2/6-31G(d) calculations, the overall perfor-
mance is very encouraging. B3LYP/6-31G(d) and MP2/
6-31G(d) ESP values can be reproduced with mean unsigned
errors under 2 kcal mol−1 e−1 using the regression equations
Eq (13) and (14), respectively. However, the fact that one
compound of the test set (SPCl3) exhibits distinct differ-
ences in ESP values might point to a common problem in
semiempirical methods, the correct treatment of the core–
core repulsion. Many NDDO methods use parameterized
Gaussian functions to model the interaction between nuclei,
an approach that is not guaranteed to work correctly for all
cases [54].

However, we are convinced that our multipole ESP ap-
proach is a step in the right direction. Our next steps are the
application of the method to the computation of the electric
field in the framework of continuum solvent models and the
definition of multipole-ESP derived atomic charges, compa-
rable to our VESPA charges [55,56].
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Appendix A

In the standard coordinate system the following orbital-sym-
metry relations hold [21]:

px = pπ , py = pπ̄ , pz = pσ , dz2 = dσ , dxz = dπ ,
dyz = dπ̄ , dx2−y2 = dδ , dxy = dδ̄ .

The following Table 2 gives all point charges for the
multipole expressions arising from the electronic charge dis-
tributionsµν including the point-charge configuration coeffi-
cients; the quantities Dsp, Dsd , Dpp, Dpd and Ddd are atom
specific constants and can be calculated in the usual way
[28]. The multipoleM00 represents a monopole [q], andM10,
M11, M1−1 a dipole [µα]. For charge distributions pαpα and
pαpβ , a linear quadrupole [Qαα] or square quadrupole [Qαβ]
is adopted (M20,M21,M2−1,M2−2), respectively. Charge dis-
tributions involving d orbitals and the multipole moments
M20 and M22 are represented by the quadrupole charge con-
figurations [Qxy] or [Qzx] − 1

2 [Qxy] (cf Fig. 1). Note that
for the sp and pd dipole contributions, the expressions are
simplified to an origin-based dipole vector. It should also be
noted that for the calculation of the atomic monopole the core
charge must be taken into account.

Appendix B

For the sake of completeness we repeat the general formulae
from ref [35] for the MEP (Eq. (15)), the electric field (Eq.
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Table 2 Point-charge arrays for the monoatomic charge distributions within a minimal valence spd-basis arising from the nonzero multipole
momentsMµν

lm up to quadrupoles for charge a distribution µν. The atom-specific distance abbreviationsDsp

1 ,Dpd

1 ,Dsd
2 ,Dpd

2 andDdd
2 correspond

to those defined in references [11] and [28]

µ ν l m N x y z q

s s 0 0 1 0.0 0.0 0.0 +1
s px 1 1 2 +2 Dsp

1 0.0 0.0 +1
s py 1 −1 2 0.0 +2 Dsp

1 0.0 +1
s pz 1 0 2 0.0 0.0 +2 Dsp

1 +1
s dxy 2 −2 4 +Dsd

2 +Dsd
2 0.0 +1/4

−Dsd
2 −Dsd

2 0.0 +1/4
+Dsd

2 −Dsd
2 0.0 −1/4

−Dsd
2 +Dsd

2 0.0 −1/4
s dyz 2 −1 4 0.0 +Dsd

2 +Dsd
2 +1/4

0.0 −Dsd
2 −Dsd

2 +1/4
0.0 +Dsd

2 −Dsd
2 −1/4

0.0 −Dsd
2 +Dsd

2 −1/4
s dxz 2 1 4 +Dsd

2 0.0 +Dsd
2 +1/4

−Dsd
2 0.0 −Dsd

2 +1/4
+Dsd

2 0.0 −Dsd
2 −1/4

−Dsd
2 0.0 +Dsd

2 −1/4
s dz2 2 0 6 0.0 0.0 +√

2 Dsd
2

√
(4/3) (+1/4)

0.0 0.0 −√
2 Dsd

2

√
(4/3) (+1/4)

+√
2 Dsd

2 0.0 0.0
√
(4/3) (−3/8)

−√
2 Dsd

2 0.0 0.0
√
(4/3) (−3/8)

0.0 +√
2 Dsd

2 0.0
√
(4/3) (+1/8)

0.0 −√
2 Dsd

2 0.0
√
(4/3) (+1/8)

s dx2−y2 2 2 4 +√
2 Dsd

2 0.0 0.0 +1/4
−√

2 Dsd
2 0.0 0.0 +1/4

0.0 +√
2 Dsd

2 0.0 −1/4
0.0 −√

2 Dsd
2 0.0 −1/4

px px 0 0 1 0.0 0.0 0.0 +1
2,2 0,2 3 +2Dpp

2 0.0 0.0 +1/4
−2Dpp

2 0.0 0.0 +1/4
0.0 0.0 0.0 −1/2

py py 0 0 1 0.0 0.0 0.0 +1
2,2 0,2 3 0.0 +2Dpp

2 0.0 +1/4
0.0 −2Dpp

2 0.0 +1/4
0.0 0.0 0.0 −1/2

pz pz 0 0 1 0.0 0.0 0.0 +1
2,2 0,2 3 0.0 0.0 +2Dpp

2 +1/4
0.0 0.0 −2Dpp

2 +1/4
0.0 0.0 0.0 −1/2

px py 2 −2 4 +Dpp

2 +Dpp

2 0.0 +1/4
−Dpp

2 −Dpp

2 0.0 +1/4
+Dpp

2 −Dpp

2 0.0 −1/4
−Dpp

2 +Dpp

2 0.0 −1/4
px pz 2 1 4 +Dpp

2 0.0 +Dpp

2 +1/4
−Dpp

2 0.0 −Dpp

2 +1/4
+Dpp

2 0.0 −Dpp

2 −1/4
−Dpp

2 0.0 +Dpp

2 −1/4
py pz 2 −1 4 0.0 +Dpp

2 +Dpp

2 +1/4
0.0 −Dpp

2 −Dpp

2 +1/4
0.0 +Dpp

2 −Dpp

2 −1/4
0.0 −Dpp

2 +Dpp

2 −1/4

(16)) and the electric field gradient (Eq. (17)) at a point in
space r that can be calculated from a mulitpole expansion.

MEP(r) = T q − Tαµ̂α

+1

3
Tαβ�̂αβ − · · · + (−1)n

(2n− 1)!!
T
(n)
αβ...ωξ̂

(n)
αβ...ω (15)

Fα(r) = −∇α MEP(r)

= −Tαq + Tαβµ̂β + 1

3
Tαβγ �̂βγ

− · · · + (−1)n

(2n− 1)!!
T
(n+1)
αβ...ψωξ̂

(n)
βγ ...ψω (16)



166 A.H.C. Horn et al.

Table 2 (Contd.)

µ ν l m N x y z q

pz dz2 1 0 2 0.0 0.0 +2 Dpd

1

√
4/3

pz dxz 1 1 2 +2 Dpd

1 0.0 0.0 +1
pz dyz 1 −1 2 0.0 +2 Dpd

1 0.0 +1
px dz2 1 1 2 +2 Dpd

1 0.0 0.0 −√
1/3

px dxz 1 0 2 0.0 0.0 +2 Dpd

1 +1
px dx2−y2 1 1 2 +2 Dpd

1 0.0 0.0 +1
px dxy 1 −1 2 0.0 +2 Dpd

1 0.0 +1
py dz2 1 −1 2 0.0 +2 Dpd

1 0.0 −√
1/3

py dyz 1 0 2 0.0 0.0 +2 Dpd

1 +1
py dx2−y2 1 −1 2 0.0 +2 Dpd

1 0.0 −1
py dxy 1 1 2 +2 Dpd

1 0.0 0.0 +1
dz2 dz2 0 0 1 0.0 0.0 0.0 +1

2 0 6 0.0 0.0 +√
2 Ddd

2 (4/3) (+1/4)
0.0 0.0 −√

2 Ddd
2 (4/3) (+1/4)

+√
2 Ddd

2 0.0 0.0 (4/3) (−3/8)
−√

2 Ddd
2 0.0 0.0 (4/3) (−3/8)

0.0 +√
2 Ddd

2 0.0 (4/3) (+1/8)
0.0 −√

2 Ddd
2 0.0 (4/3) (+1/8)

dz2 dxz 2 1 4 +Ddd
2 0.0 +Ddd

2

√
1/3 (+1/4)

−Ddd
2 0.0 −Ddd

2

√
1/3 (+1/4)

+Ddd
2 0.0 −Ddd

2

√
1/3 (−1/4)

−Ddd
2 0.0 +Ddd

2

√
1/3 (−1/4)

dz2 dyz 2 −1 4 0.0 +Ddd
2 +Ddd

2

√
1/3 (+1/4)

0.0 −Ddd
2 −Ddd

2

√
1/3 (+1/4)

0.0 +Ddd
2 −Ddd

2

√
1/3 (−1/4)

0.0 −Ddd
2 +Ddd

2

√
1/3 (−1/4)

dz2 dx2−y2 2 2 4 +√
2 Ddd

2 0.0 0.0 −√
4/3 (+1/4)

−√
2 Ddd

2 0.0 0.0 −√
4/3 (+1/4)

0.0 +√
2 Ddd

2 0.0 −√
4/3 (−1/4)

0.0 −√
2 Ddd

2 0.0 −√
4/3 (−1/4)

dz2 dxy 2 −2 4 +Ddd
2 +Ddd

2 0.0 −√
4/3 (+1/4)

−Ddd
2 −Ddd

2 0.0 −√
4/3 (+1/4)

+Ddd
2 −Ddd

2 0.0 −√
4/3 (−1/4)

−Ddd
2 +Ddd

2 0.0 −√
4/3 (−1/4)

dxz dxz 0 0 1 0.0 0.0 0.0 +1
2,2 2,0 6 0.0 0.0 +√

2 Ddd
2 +1/6

0.0 0.0 −√
2 Ddd

2 +1/6
+√

2 Ddd
2 0.0 0.0 0

−√
2 Ddd

2 0.0 0.0 0
0.0 +√

2 Ddd
2 0.0 −1/6

0.0 −√
2 Ddd

2 0.0 −1/6
dxz dyz 2 −2 4 +Ddd

2 +Ddd
2 0.0 +1/4

−Ddd
2 −Ddd

2 0.0 +1/4
+Ddd

2 −Ddd
2 0.0 −1/4

−Ddd
2 +Ddd

2 0.0 −1/4
dxz dx2−y2 2 1 4 +Ddd

2 0.0 +Ddd
2 +1/4

−Ddd
2 0.0 −Ddd

2 +1/4
+Ddd

2 0.0 −Ddd
2 −1/4

−Ddd
2 0.0 +Ddd

2 −1/4
dxz dxy 2 −1 4 0.0 +Ddd

2 +Ddd
2 +1/4

0.0 −Ddd
2 −Ddd

2 +1/4
0.0 +Ddd

2 −Ddd
2 −1/4

0.0 −Ddd
2 +Ddd

2 −1/4
dyz dyz 0 0 1 0.0 0.0 0.0 +1

2 0 6 0.0 0.0 +√
2 Ddd

2 +1/6
0.0 0.0 −√

2 Ddd
2 +1/6

+√
2 Ddd

2 0.0 0.0 −1/2
−√

2 Ddd
2 0.0 0.0 −1/2

0.0 +√
2 Ddd

2 0.0 +1/3
0.0 −√

2 Ddd
2 0.0 +1/3
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Table 2 (Contd.)

µ ν l m N x y z q

dyz dx2−y2 2 −1 4 0.0 +Ddd
2 +Ddd

2 (−1) (+1/4)
0.0 −Ddd

2 −Ddd
2 (−1) (+1/4)

0.0 +Ddd
2 −Ddd

2 (−1) (−1/4)
0.0 −Ddd

2 +Ddd
2 (−1) (−1/4)

dyz dxy 2 1 4 +Ddd
2 0.0 +Ddd

2 +1/4
−Ddd

2 0.0 −Ddd
2 +1/4

+Ddd
2 0.0 −Ddd

2 −1/4
−Ddd

2 0.0 +Ddd
2 −1/4

dx2−y2 dx2−y2 0 0 1 0.0 0.0 0.0 +1
2 0 6 0.0 0.0 +√

2 Ddd
2 (−4/3) (+1/4)

0.0 0.0 −√
2 Ddd

2 (−4/3) (+1/4)
+√

2 Ddd
2 0.0 0.0 (−4/3) (−3/8)

−√
2 Ddd

2 0.0 0.0 (−4/3) (−3/8)
0.0 +√

2 Ddd
2 0.0 (−4/3) (+1/8)

0.0 −√
2 Ddd

2 0.0 (−4/3) (+1/8)
dxy dxy 0 0 1 0.0 0.0 0.0 +1

2 0 6 0.0 0.0 +√
2 Ddd

2 (−4/3) (+1/4)
0.0 0.0 −√

2 Ddd
2 (−4/3) (+1/4)

+√
2 Ddd

2 0.0 0.0 (−4/3) (−3/8)
−√

2 Ddd
2 0.0 0.0 (−4/3) (−3/8)

0.0 +√
2 Ddd

2 0.0 (−4/3) (+1/8)
0.0 −√

2 Ddd
2 0.0 (−4/3) (+1/8)

Fαβ(r) = −∇α∇β MEP(r)

= −Tαβq + Tαβγ µ̂γ + 1

3
Tαβγ δ�̂γ δ

− · · · + (−1)n

(2n− 1)!!
T
(n+2)
αβ...χψωξ̂

(n)
γ δ...χψω (17)

with

T = 1

R
(18)

Tα = ∇α

1

R
= −Rα

R3
(19)

Tαβ = ∇α∇β

1

R
= 3RαRβ − R2δαβ

R5
(20)

Tαβγ = ∇α∇β∇γ

1

R

= −15RαRβRγ − 3R2(Rαδβδ + Rβδαγ + Rγ δαβ)

R7

(21)

Tαβγ δ = ∇α∇β∇γ∇δ

1

R

= 1

R9
[105RαRβRγRδ

−15R2(RαRβδγ δ + RαRγ δβδ + RαRδδβγ

+RβRγ δαδ + RβRδδαγ + RγRδδαβ)

+3R4(δαβδγ δ + δαγ δβδ + δαδδβγ )]. (22)
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Note added in proof:

After this manuscript was in the press, we became aware of an existing implementation of the mthod described here in the COSMO solvent model
[57] code of Mopac 7 for the standard NDDO sp-basis (i.e. without d-orbitals).

For completeness, we include two additional references [58,59] that refer to this implementation without defining it completely or testing its
performance.


